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(1] The advanced very high resolution radiometer (AVHRR) data acquired from the
National Oceanic and Atmospheric Administration (NOAA) satellites have been widely
applied to a variety of environmental research. A single AVHRR scene is seldom
completely cloud-free. Maximum value compositing (MVC) to create a single image from
multiple orbits and dates has become the most valuable method to minimize cloud
contamination. Composite images are not absolutely cloud-free. Postcomposite cloud
screening of the composite aggregates was developed to overcome the residual cloud
contamination problem, but this is not possible for real-time delivery of composite data or
not suitable for compositing based on AVHRR data from multiple NOAA satellites.
Another approach is to detect and remove cloud-contaminated pixels from daily AVHRR
scenes prior to applying the MVC method to provide real-time composite images. This
study developed an automated cloud detection method for daily NOAA 16 AVHRR scenes
over the state of Texas and Mexico. The accuracy of the cloud detection algorithm was
greater than 93% based on a random test sample from 36 images. Unidentified cloud
shadow pixels as well as misidentified barren land pixels and water pixels contributed to
more than 5% of the accumulated errors. The error from misidentification of water pixels
can be reduced by assigning different threshold values for channel 4 brightness
temperature according to the geographical latitude of the data. The resulting daily cloud-
free AVHRR data can be used to construct short-time period composite images valuable
for detecting subtle but critical environment changes. In addition, compositing methods
other than MVC, such as multidate averaging or minimum value selection, can be applied
for various research purposes, once the daily AVHRR data are cloud-free.  INDEX TERMS:
3359 Meteorology and Atmospheric Dynamics: Radiative processes; 3337 Meteorology and Atmospheric
Dynamics: Numerical modeling and data assimilation; 3360 Meteorology and Atmospheric Dynamics:
Remote sensing; KEYWORDS: NOAA 16, AVHRR, cloud detection
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1. Introduction but cloud contamination can be a severe shortcoming by
obstructing the ocean and land surface, and thus limiting the
potential to monitor sea surface and vegetation conditions,
respectively [Ohring and Clapp, 1980]. In general, clouds

have higher visible reflectances but lower NDVI values

[z] The normalized difference vegetation index (NDVI)
values derived from the advanced very high resolution
radiometer (AVHRR) data are commonly applied to
research such as vegetation change detection [Jakubauskas

etal., 2002; Remmel and Perera, 2001], biomass estimation
(Lubus et al., 2002; Maselli et al., 2000] and land cover
mapping [Chen et al., 1999; Hill et al., 1999] at various
spatial scale (e.g., state to global scale). Frequent repeat
coverage at no cost is a strong advantage of AVHRR data,
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[Chen et al., 2002b]. Holben [1986] proposed the maximum
NDVI value compositing method te minimize the effects of
cloud contamination on AVHRR data, because the presence
of clouds, smoke, snow and ice in a pixel will reduce the
NDVI value. Ten-day to biweekly NDVI composites are
widely used for research [Senay and Elliott, 2002; Emery
and Baldwin, 1998]. Gutman and Ignatov [1996] concluded
that even 2-week NDVI composites were possibly cloud-
contaminated, which is true for areas such as the state of
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Figure 1. Composites of minimum visible reflectance: (a) high density of cloud coverage appeared in
the weekly composite of Texas for 2—-8 December 2001 and (b) a few clouds appeared iu the biweekly

composite for 2-15 December 2001.

Texas and Mexico next to the Gulf of Mexico (Figure 1). In
addition, NDVI composite images for periods longer than
14 days are not suitable for monitoring agricultural crops
with relatively short growing seasons of 3—-4 months.
Postseason cloud detection [Ciklar, 1996] and postcompos-
ite cloud detection [Gutman et al., 1994] were designed to
provide cloud-free weekly or 10-day NDVI composite data.
However, the former method based on temporal thresh-
olding cannot deliver real-time composite data, and the
latter method treats data from a single sensor and can not
be used to composite data from multiple AVHRR sensors.

[3] Automated cloud detection for the daily National
Oceanic and Atmospheric Administration (NOAA)-14
AVHRR data over Texas area had been developed to obtain
cloud-free information for environmental research [Chen et
al., 2002b}. Cloud-contaminated pixels were identified and
used to construct a cloud mask. Real-time NDV1 compo-
sites based on daily clear-sky AVHRR data were success-
fully used to monitor crop growth in Texas [Chen et al.,
2003}, and to estimate comn yield in Mexico [Bdez-Gonzdlez
et al.,, 2002]. In addition, Chen et al. [2002a] merged the
cloud-free AVHRR data from NOAA 14 and 15 to create
NDVI composite images. The NOAA 14 AVHRR afternoon
images were not appropriate for vegetation research since
2000 because of the negative impact of the large solar zenith
angle on the reflectance retrieval accuracy. The NOAA 15

AVHRR moming data were mostly contaminated by cloud
coverage over Texas and Mexico, and thus they were of
little use to our study. The NOAA 16 satellite was launched
on 20 September 2000 and became officially operational at
the beginning of 2001. The ascending NOAA 16 afternoon
overpasses were received between 1330 h and 1500 h Texas
local time when the solar zenith angle was between 15° and
40° during March to October. The NOAA 16 AVHRR data
with reflectance around solar noon in the summer were
anticipated to provide better quality data for vegetation
studies. Large-scale monitoring and estimation of crop yield
is essential to ensure a stable and reliable food supply in
developing countries. The crop growth modeling for Mex-
ico is a long-term project using satellite and field data to
predict grain yield. Previous work was done using NOAA
14 AVHRR data from 1999 and 2000. NOAA 16 AVHRR
data were adopted for the large-scale real-time crop model-
ing starting in 2001.

[s] Each NOAA 14 AVHRR/2 image has five channels.
In addition to the original five channels (0.58-0.68 pm,
0.72-1.00 pm, 3.55-3.93 pym, 10.3-11.3 pm and 11.5-
12.5 pm), the NOAA 16 AVHRR/3 data has one extra
channel with wavelengths of 1.58—1.64 um (channel 3A)
while the original channel 3 was renamed to channel 3B, but
only five channels can be active at any one time. Channel
3A was active for NOAA 16 AVHRR after launch until the
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end of April 2003 for daytime orbits. Starting in May 2003,
channel 3B became active for fire studies. Published cloud
detection algorithms for AVHRR data to date were devel-
oped for NOAA 14 and earlier satellites [Saunders and
Kriebel, 1988; Franca and Cracknell, 1995; Hutchison and
Choe, 1996; Hutchison et al., 1997; Dech et al., 1998; Chen
¢t al., 2002b]. In addition, NOAA/NESDIS also developed
the algorithm CLAVR-1 (Clouds from AVHRR-Phase I) for
deriving NOAA AVHRR cloud coverage and mapping total
cloud amount [Stowe et al., 1999). These algorithms involve
the use of solar reflectance, brightness temperatures, the
ratio of solar reflectance, NDVI as well as the mathematical
difference between reflectances or brightness temperatures
in different channels. Several cloud detection algorithms
were sensitive to surface inhomogeneity, because a series of
universal thresholds and uniformity tests were applied to a
2 x 2ora3 x 3 pixel arrays. Channel 3B was employed in
the CLAVR-1 algorithm to detect thinner but uniform
clouds (>6%) as well as to restore misidentified clouds
(<3%) [Stowe et al., 1999]. Moreover, the brightness
temperature difference between channels 3B and 4 is
capable of identifying thin clouds and cirrus clouds of
NOAA 14 AVHRR data [Chen et al.,, 2002b]. However,
because of NOAA programming of the NOAA 16 opera-
tional satellite, channels 3B data are not available for
vegetation studies before May 2003.

[5] Cloud-free images are required for vegetation studies
over Texas and Mexico. The existing NOAA 14 AVHRR
daily cloud detection methods can not be transferred to
NOAA 16 data without modification/validation. Part of this
requirement hinges on the fact that the spectral response
functions have changed for most of the channels on
AVHRR/3. The objectives of this study were: (1) to develop
an automated cloud detection method for NOAA 16
AVHRR data over the two study areas of Texas and Mexico,
and (2) to assess the accuracy of this automated cloud
detection method. Texas and Mexico are in the same geo-
graphical region, and both regions have similar weather
conditions. Ideally, a single algorithm should be able to dif-
ferentiate cloud-contaminated pixels from clear-sky pixels
for both study areas.

2. Methodology

[6] NOAA 16 AVHRR data were downloaded from the
High Resolution Picture Transmission (HRPT) receiving
station located at Blackland Research and Extension Center
(part of Texas Agricultural Experiment Station) in Temple,
Texas. The NOAA 16 AVHRR data from ascending orbits
covering Texas areas contain channel 3A for the daytime
orbit segments from April 2001 to February 2003, when this
study was conducted. While more than four orbits were
received daily, data suitable for this study were only
obtained from the afiernoon orbits between 1330 h and
1500 h. The remaining orbits were received either at
nighttime or at a time without sufficient daylight. It takes
abeut 9 days for the NOAA 16 AVHRR to repeat an orbit.
Thus one out of every 9 temporal images did not cover the
entire state of Texas because of the satellite orbit location.

[*] Piecewise linear (PWL) calibration coefficients for
NOAA 16 derived by the Canada Center for Remote
Sensing were applied to the Texas data. The PWL coef-
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ficients were based on a postlaunch calibration derived by
NOAA for NOAA 16 AVHRR/3 data [Heidinger et al.,
2002]. The daily raw AVHRR data were preprocessed using
an automated approach. Visible channels 1, 2 and 3A were
calibrated from digital counts to top-of-atmosphere (TOA)
reflectance in percent (%), and the thermal channels 4 and 5
were converted to TOA brightness temperature (BT) in
degrees Kelvin (°K). The NDVI value was computed for
every pixel in each image.

[s] A total of 36 NOAA 16 AVHRR images acquired
between April 2001 and March 2002 were utilized to
develop the cloud detection algorithm. Three images were
selected on the 10th, 20th and 30th day of each month.
Cloud-contaminated pixels were classified as thick cloud,
thin cloud, cirrus cloud, cloud edge and cloud shadow
based on the density, color, shape and reflectance of
clouds. For example, thick clouds appear white (Figure 1)
due to high solar reflectance, while the thin clouds appear
in various shades of gray because of low densities of cloud
particles. Moreover, most of the thin clouds were semi-
transparent with visibly wispy shapes. Although the cloud
shadow pixels were technically clear-sky pixels, the cloud
shadows were treated as cloud contamination class in this
study. Clear sky pixels for this study were separated into
three classes: vegetated land, barren land and water
according to solar reflectance, NDVI values and land
cover maps developed in 1992 using LANDSAT Thematic
Mapper (TM) images. Five pixels were chosen manually at
random from each cloudy and noncloudy class. Therefore
40 pixels (25 cloudy pixels and 15 clear-sky pixels) were
chosen for each sampled image. The individual TOA
reflectance, BT and NDVI value were recorded for each
sampled pixel. As well, the differences between TOA
reflectance in channels 2 and 3A and between brightness
temperature in channels 4 and 5 were computed for each
sampled pixel. Each cloudy and clear-sky class had 180
randomly sampled pixels covering the entire year. A total
of 1440 pixels were sampled from all eight classes for this
cloud detection study.

3. Result
3.1. Solar Reflectance

[9] All of the cloudy and clear-sky pixels except for veg-
etated areas have similar reflectance values in the visible and
near-infrared channels (Figure 2). Bright areas such as clouds
and barren lands had relatively high solar reflectances.
The thick cloud pixels had the highest reflectance, averaging
at 0.79. The thin cloud, cirrus cloud and cloud edge pixels
generally had similar reflectances greater than 0.2, The
barren land pixels had reflectances between 0.1 and
0.4, which were similar to the reflectances of cloudy pixels.
Cloud shadows and water bodies had relatively low
solar reflectances less than 0.2. Green vegetation reflected
strongly in the near-infrared wavelengths, which caused
difficulties in differentiating vegetated pixels from most of
the cloudy pixels (Figure 2). Since vegetated land pixels
carried the most important information for continuous mon-
itoring research projects, it was apparent that the visible
reflectance (R;) would perform more efficiently in terms of
differentiating vegetated clear-sky pixels from cloud-con-
taminated pixels.
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Figure 2. Top-of-atmosphere (TOA) reflectance in channel 1 (Ry) plotted against channel 2 (R,) for (a)
clear-sky pixels and (b) cloud-contaminated pixels. See color version of this figure at back of this issue.

[10] Chen et al. [2002b] chose a threshold of 0.27 for the
R; for NOAA 14 AVHRR cloud detection to preserve clear-
sky pixels while removing thick and most thin clouds as
well as cirrus clouds. For this study of NOAA 16 data, both
sampled vegetated and water pixels had R, less than 0.2.
Eight out of 180 sampled barren land pixels had R, greater
than 0.27 (Figure 2a). A lot of thin cloud, cirrus cloud and
cloud edge pixels had R, greater than 0.27, while all of
thick cloud pixels had R, greater than 0.47 (Figure 2b).
Thus a threshold of 0.27 was adopted to eliminate thick
clouds and some of the other cloudy pixels. According to
the result, 505 out of 900 sampled cloudy pixels were
correctly identified based on the threshold of 0.27, while
only eight out of 180 barren pixels were accidentally
removed or flagged as cloud-contaminated (Table 1). The
R; was able to identify more than two thirds of the cirrus
cloud pixels as well as half of the thin cloud pixels and
cloud edge pixels. Unfortunately, none of the cloud shadow
pixels were flagged by the R, test.

[1] The mid-infrared channel (3A) was new for the
AVHRR/3 radiometer on board NOAA 15, -16 and -17.
The performance of the mid-infrared reflectance (R;,) was
much different from both R, and the near-infrared reflec-
tance (R;) as seen in Figures 3 and 4. Cloud-filled and cloud
edge pixels had a huge range from 0.08 to 0.6 for R;,,
which covered the reflectance range of barren lands and
vegetated areas as well. Both cloud shadows and water
bodies had very low R;,, and many of the water bodies had
a reflectance of 0. Overall, channel 3A reflectance alone
was a poor discriminator of cloudy pixels.

3.2. Infrared Brightness Temperature

[12] Al of the sampled pixels had a brightness tempera-
ture (BT) in channel 4 (BT,) similar to that in channel 5

(BTs). In general, cloudy pixels had lower BTs than clear-
sky pixels (Figure 5). The BT, range for barren land pixels
was very huge between 260°K and 328°K, which covered
the BT, ranges of cloud shadow, cloud edge and cirrys
cloud pixels. According to these results, the use of BT alone
could only properly discriminate thick and thin clouds,
which was the same as the use of R,. Brightness temper-—
ature difference was widely applied in the“cloud detectior—
algorithm proposed by Yamanouchi and Kawaguchi [1992].
Hutchison et al. [1997] used the difference Letween bright-
ness temperature in channel 3B (BT;g) and BT,. Saunders
and Kriebel [1988] as well as Dech et al. [1998] used the
difference between BT, and BTs. Since BTz was not
available from NOAA 16 ascending orbits, only the BT,-
BT; difference parameter was applicable to the current
study. However, the results showed that both clear-sky
and cloud-contaminated pixels had similar BT difference
between —1°K and 7°K over Texas and Mexico areas,
because the high water vapor absorption of BT, and BT;
masked cloud signatures. The BT difference can detect
cloudy pixels at higher latitude areas where water vapor is
lower especially in winter. Overall, the BT difference was
not capable of distinguishing cloud-contaminated pixels
over the state of Texas and Mexico.

3.3. NDVI and Reflectance Difference

[13] The cloud shadow pixels had R, values and BT
difference similar to the cloud-free pixels. The individual
mid-infrared reflectance (R34) was not useful data for cloud
detection, but the difference between R, and R, did
provide valuable information to distinguish cloud shadow
pixels from cloud-free pixels. The cloud shadows had
higher R, than R;a, while the barren lands had R, much
less than R;, (Figure 6). Barren lands had reflectance

Table 1. Stepwise Cloud Detection Algorithm and the Statistical Performance of Each Step

Classification of Sampled Pixels

Processes of Identification

Thick Cloud Thin Cloud Cirrus Cloud  Cloud Edge

Cloud Shadow Water Barren Land  Vegetation

R, > 027 180 89 150 86 0 0 8 0
Ry>-R3a > ~0.05 & 0 < NDVI < 0.33 - 66 19 75 135 1 6 0
R3a 2 0.09 & NDV1 < 0 - 18 7 7 7 2 0 0
BT, > 300°K/295°K & NDVI < 0 - 0 0 0 7 0 0 0
R; < 0.1 & 0 < NDVI<0.33 - 0 0 0 8 0 4 0
Total Removed pixels 180 173 176 168 157 3 18 0
Accuracy 100% 96% 98% 93% 87% 98% 90% 100%
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Figure 3. Top-of-atmosphere (TOA) reflectance in channel 1 (R;) plotted against channel 3A (R;,) for
(a) clear-sky pixels and (b) cloud-contaminated pixels. See color version of this figure at back of this

issue.

ditferences less than —0.05, while most cloud-contaminated
pixels had reflectance differences greater than —0.05 similar
to water bodies. Water bodies could be differentiated from
¢cloud shadow pixels simply based on NDVI values. Results
in Table 1 show that 295 out of 395 remaining cloud-
contaminated pixels (900 — 505 = 395) were easily distin-
guished based on NDVT values being between 0 and 0.33
and the R>-Rs, difference parameter being greater than
~0.05. This process effectively identified 135 out of 180
cloud shadow pixels (Table 1). Six out of the 172 remaining
barren land pixels were incorrectly removed through this
process. This was an acceptable omission error for elimi-
nating cloudy pixels.

3.4. Differentiation of Water From
Cloud-Contaminated Pixels

[14] A total of 100 cloudy pixels remained because they
had either NDVI values less than 0 (as did water bodies) or
reflectance differences less than ~0.05 (as did barren lands).
Most water bodies had Rj, close to 0, and other cloudy
pixels except cloud shadows had R;, greater than 0.09.
Moreover, several cloud shadows with negative NDVI
values had BT, values greater than 300°K from Apnl to
October or greater than 295°K from November to March,
while water bodies had lower BT, values. Thresholds for
the two tests chosen were 0.09 for R;, and 300°K (April-
October) or 295°K (November—March) for BT, to identify
cloudy pixels from all pixels with NDVI values less than 0.
The R34 test successfully removed 39 out of the remaining

= 135
5 S 1.08 Water
2= 0.81 * Barren
g - Vegetation
g 8054 g
55027 —q&

0 % T T Y Y

0 027 054 081 108 135
Reflectance in channel2

of 100 cloudy pixels. The R; 5 threshold correctly identified
18 out of the remaining 25 thin cloud pixels, 7 out of the
remaining 11 cirrus cloud pixels, 7 out of the remaining 19
cloud edge pixels and 7 out of the remaining 45 cloud
shadow pixels (Table 1). The BT, threshold was used to
identify cloud shadow pixels, and it effectively removed 7
out of the remaining of 38 cloud shadow pixels, . . . _

3.5. Differentiation of Barren Lands From Cloud
Shadow Pixels

[1s] A total of 54 cloudy pixels were still not identified
after applying the aforementioned threshold tests. Of these,
31 were cloud shadow pixels. Ten of the 31 cloud shadow
pixels had NDVI values greater than 0, and were confused
with barren land pixels having a similar BT difference and
reflectance difference. Since cloud shadows tend to be dark,
their R, values were slightly lower than for bright barren
lands. A threshold of 0.1 was chosen for R, to distinguish
cloud shadow pixels from barren land pixels. The R,
threshold effectively identified 8 out of the 10 cloud shadow
pixels with positive NDVI values, while 4 barren land
pixels were also removed (Table 1).

3.6. Independent Validation

[16] Accuracy assessment has been required for research
using satellite images to leam about the quality of informa-
tion derived from remotely sensed data and to evaluate the
performance of a research method [Congalton and Green,
1999]. A total of 36 daily images from June 2001 to May
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Figure 4. Top-of-atmosphere (TOA) reflectance in channel 2 (R;) plotted against channel 3A (R, a) for
(a) clear-sky pixels and (b) cloud-contaminated pixels. See color version of this figure at back of this

issue.



AAC  10-56 CHEN ET AL.: CLOUD DETECTION METHOD FOR NOAA 16 AVHRR
14
2 _ 12 # Thick clouds
% sE 10 x » Thin clouds
g 29 " a Cirrus
K . —
g § S . X WX Xfow oo x Cloud edges
e N BN 1300 o x Cloud shadow
280 4 e——— A
2 @2 R -~ Water
Y R Y
EES SO + Barren
=2 T 0 0 e nt s A - Ve tation
e} 2 O x ege

180 200 220 240 260 280 300 320 340
Brightness temperature in channel 4 (K)

Figure 5. Brightness temperature in channel 4 (BT,) plotted against brightness temperature difference.
See color version of this figure at back of this issue.

2002 were used to validate the cloud detection algorithm.
Three images were selected on the 5th, 15th and 25th day of
each month. April and May 2002 were used for validation,
because several daily AVHRR scenes from NOAA 16 in April
and May 2001 were lost due to conflicts in data reception with
NOAA 14. In addition, this cloud detection algorithm was
developed for multitemporal applicability between years. The
developed cloud detection method was applied to the 36
selected images. More than 1400 pixels were randomly
sampled from the 36 images, including cloud-contaminated
and cloud-free pixels. Each sampled pixel had been visually
classified before being processed by our cloud detection
algorithm. The results indicated that the sampled pixels of
thick cloud, cirrus cloud and cloud edge were properly
identified, while seven thin cloud pixels and 12 cloud shadow
pixels were not correctly distinguished from clear-sky pixels
(Table 2). On the other hand, 26 water pixels and 52 barren
land pixels were misclassified as cloud-contaminated pixels.
The overall accuracy was close to 93%.

4. Discussion

[17] It was unusual to have 26 water pixels misidentified
as cloudy pixels. Eighteen of the 26 pixels were misclassi-

fied because BT, values were greater than the threshold
value of 295°K. These pixels were either obtained from -
March or November images. In addition, they were distrib--
uted in water bodies in central or southern Mexico. Accord-

ing to the results of this study, the BT, for water bodies-in-—

Mexico was between 295 and 300°K: from" November——

March, a couple of degrees higher than that in Texas,
Moreover, the BT, was less influenced by seasonal changes,
because the locations were closer to the equator. It was
therefore necessary to increase the threshold value for BT,
to 300°K for images from November to March for pixels
with a latitude of less than 25° (Figure 7). There were only
4 water pixels misidentified when the threshold was in-
creased to 300°K. Another option is to create a perenmial
water mask to eliminate water pixels before applying the
cloud detection method.

[18] It was unfortunate that a total of 52 barren land pixels
were misidentified as cloudy pixels. The main reason was
that one quarter of the barren land pixels were collected in
the bright deserts of northern Mexico or West Texas where
the R, was greater than 0.27. The surface of the deserts was
as bright as the clouds, though the deserts had a much
higher BT, than the clouds. The results indicated that all of
the barren lands with bright reflectances had a BT, of
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Table 2. Results of the Independent Validation of the Noaa 16 AVHRR Cloud Detection Algorithm®
Reference Data
Cloud Types Land Cover Types
Cloud Detection Results Thick Clouds  Thin Clouds _ Cirrus Clouds  Cloud Edge _ Cloud Shadow  Water _ Barren Land  Vegetation
(loud-contaminated pixels 180 173 180 180 168 26 52 0
Clear-sky pixels 0 7 0 0 12 154 128 180
Accuracy 100% 96.1% 100% 100% 93.3% 85.6% 71.1% 100%

*Overall accuracy = (180 + 173 + 180 + 180 + 168 +154 + 128 + 180)/1440 = 93.26%.

greater than 300°K, while all types of cloud-contaminated
;ixels had a maximum BT, of less than 299°K. Thus the R,
threshold combined with the BT threshold would positively
improve the accuracy of the algorithm (Figure 7). In
addition, many of barren land pixels were misidentified as
cloud shadows, because the difference between R, and R,
was greater than —0.05 or the R was less than 0.1. Most of
the misidentified pixels had a dark surface and were
collected from Mexico data between October and February.
Changing threshold values can increase the accuracy of
identifying barren land pixels, but may fail to detect some of
the cloud-contaminated pixels, especially cloud shadows. It
was not easy to find a suitable threshold value to accurately
classify the cloud-contaminated and clear-sky pixels. More-
over. this cloud detection algorithm was mainly developed
to provide cloud-free data for vegetation monitoring and
areen biomass estimation.

" [19] Pixels contaminated by cloud shadows were classified
as cloudy pixels in this study. A couple of cloud shadow
pixels with negative NDVI values were not correctly identi-
fied by our automated cloud detection algorithm. Two thirds
of the unidentified cloud shadow pixels were collected from
images acquired between November and March. These un-
identified cloud shadow pixels appeared as a black surface
like water bodies, and their R, was lower than R,. In addition,
few cloud shadow pixels had high NDVI values greater than
0.33 similar to the surrounding vegetated pixels, but their dark
surfaces were readily identified as cloud shadow pixels by
visual inspection. In general, those few remaining cloud
shadow pixels would not cause a strong bias in the yield
forecast for the composites.

[20] The CLAVR-1 algorithm was compared with the
cloud detection algorithm developed in this study using the
same AVHRR data for Texas and Mexico areas. Two tests in
the CLAVR-1 algorithm involving channel 3B were
neglected. Results showed the CLAVR-1 algorithm correctly
identified most cloudy pixels except cloud shadow pixels.
Many of the barren land pixels were classified as cloudy or
mixed pixels when applying CLAVR-1 algorithm, and few
water and vegetated pixels were misidentified as mixed
pixels as well. Most of the misidentifications were caused
by the Ry and BT, uniformity tests for each 2 x 2 amay
because of surface inhomogeneity. More than 100 of the
cloud shadow pixels were classified as clear-sky pixels, and
these misidentified cloud shadow pixels occurred randomly
in each month. Many of the cloud shadow pixels in Southern
US and Mexico were missed because they had a BT, of
greater than 293°K. A lot of barren land pixels were
classified as mixed or cloudy pixels, particularly the deserts
within the border of Texas and Mexico where the ratio of R,
to R, fell into the cloudy range between 0.9 and 1.1. Stowe et
al. [1999] mentioned that the CLAVR-1 tests employing

thermal channels (3B, 4 and 5) became unreliable and
meaningless when the BT, exceeded 315°K, because the
thermal channels approached saturation values. The desert
areas frequently had a BT, of greater than 315°K between
June and September, and therefore the CLAVR-1 test using
the difference between BT, and BT was not appropriate for
Texas and Mexico.

[21] Although the cloud detection algorithm developed in
this study included only 5 tests, each of threshold values
was chosen based on data for an entire year, which would
accommodate seasonal and climatic variations expected in
Texas and Mexico. This algorithm utilized R;, as essential
procedures to effectively identify cloud-contaminated pixels.

Two out of five cloud detection tests required the Raa, and. . ..

142 out of 180 cloud shadow pixels were identified because
of the inclusion of R34 data. Less than half of cloud shadow
pixels were correctly identified for NOAA 14 AVHRR data,
because the R;, was not available for NOAA 14 and earlier
satellites [Chen et al., 2002b]. In addition, 285 out of 900
cloud contaminated pixels from the data for independent
validation were identified by the second and third tests
utilizing R3. The use of Rj, successfully identified 30% of
thin cloud pixels, 30% of cloud edge pixels and 85% of
cloud shadow pixels according to the results of the inde-
pendent validation, while 17% of barren land pixels were
incorrectly removed.

[22] The major function of R;, in this study was to
identify remaining cloudy pixels (including cloud shadow

NOAA-16 AVHRR data
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1 No
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Figure 7. Cloud detection algorithm of NOAA 16
AVHRR for the state of Texas and Mexico.
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Figure 8. NDVI temporal profiles for com growth monitoring in northern Texas, (a) traditional NDVI

composites and (b) conditional NDVI composites.

pixels) that were undetected by the first R, test (Table 1),
though R3, was originally included to distinguish snow/ice
from clouds. For the NOAA 14 data, the brightness tem-
perature difference between channel 3 (BT;g) and BT,
could identify clouds but not cloud shadows, because the
cloud shadows had a BT, much higher than cold clouds
[Chen et al, 2002b]. Both NOAA 14 and NOAA 16 are
afternoon satellites, and the NOAA 15 and NOAA 17 are
morning satellites. BT;g data from NOAA 14 AVHRR
provided valuable information for the research of global
fire monitoring and detection. Therefore channel 3B has
been selected for NOAA 16 operation at all times starting
May 2003 by NOAA for more efficient fire monitoring,
while channel 3A has been selected for NOAA 17 daylight
orbits. In the future, a new approach is considered necessary
for cloud shadow detection with NOAA 16 AVHRR data
when the R34 is not available.

[23] Both snow and ice/frost are not mentioned in this
study, because they rarely occur in our study areas. In
general, bright snow pixels will produce very strong visible
reflectances similar to those for thick cloud pixels. The
snow pixels unlike the cloudy pixels do not have associated
shadow pixels. Terrain shadows and cloud shadows can be
confused for pixels with large solar zenith angles. Ice/frost
pixels could not be simply identified by visual inspection,
but they typically have low NDVI values and low BTs as do
cloudy pixels. Therefore both snow and ice/frost covered
pixels would be classified as various cloud pixels according
to the cloud detection algorithm. This algorithm was devel-
oped based on the characteristics of each cloud contamina-
tion type for Texas and Mexico, and it could be certainly
applied elsewhere. Each threshold value was chosen to
identify/remove cloud-contaminated pixels while retaining
clear-sky pixels based on observed land and water condi-
tions. Texas and Mexico have short mild winters. It would
be necessary to modify the threshold values before applying
this algorithm to other areas in the United States, particu-
larly during the winter.

[24] Corn, a major crop species in Texas, is mainly
planted in April and harvested in September or October.
The biweekly maximum value NDVI composites derived
from NOAA 16 AVHRR data have been used to monitor
com growth stage in Texas and to predict com yield in
Mexico. The NDVI composites based on the MVC method
(traditional NDVI composites) for com monitoring in

Northem Texas had an unusually low NDVI value for the
date of 9 September when corn reached maturity (Figure 8a).
The NDVI composites based on the MVC method using
daily cloud-free AVHRR scenes (conditional NDVI compo-
sites) showed that the NDVI value for the date of
9 September was missing because of continuous cloud

contamination for 14 days in that location (Figure 8b), f=_

addition, two NDVI values based on conditional NDVI
composites were missing because of cloud contamination at
the beginning of the corn season between the end of April
and May, while the traditional NDVI composites suggested
that the NDVI values were influenced because of environ-
mental changes. The traditional NDVI temporal profiles
could not resolve whether the unusually low NDVI values
were caused by environmental stress such as drought and
insect damage or by continuous cloud contamination. The
conditional NDVI profile showed that the low NDVI value
between 15 July and 12 August was. not contaminated by
clouds, which suggested a possible drought situation and/or
other environmental causes.

5. Conclusion

[2s] This newly developed cloud detection algorithm for
NOAA 16 AVHRR data successfully classified all of the
thick cloud, cirrus cloud as well as cloud edge pixels. The
accuracy of this algorithm was greater than 93%. Less than
2% of the cloudy pixels were unidentified, while none of the
vegetated pixels were misclassified. NDVI composite
images based on daily cloud-free data will provide real-
time information beneficial to agricultural monitoring and
short-term environmental studies. Moreover, they provide
more accurate and reliable data for short time period
composites. In general, 14-day composites are long enough
to obtain cloud-free information. However, our study sites
in Texas and Mexico were frequently covered by clouds for
periods longer than two weeks at a time in winter. Thus the
daily cloud detection algorithm is required before creating
composite images, though some biweekly composites may
lack any pixel values because of continuous cloud coverage.
Moreover, daily cloud-free AVHRR data can be used to
create composite images using compositing methods other
than MVC such as multidate averaging, minimum value
selection or other mathematical operators, since the cloud
contaminated pixels have been removed. Hansen et al.
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(2002] successfully used minimum visible reflectance com-
p:)siting and maximum NDVI compositing to study tree
cover. Multidate averaging compositing can be useful for
remperature studies where the MVC method is likely to
roduce biased surface temperature information not repre-
sentative of the composite period. The switch from channel
3A to channel 3B starting in May 2003 limits the use of this
algorithm to NOAA 16 AVHRR data acquired between
September 2000 and April 2003. Research is planned to
modify our cloud detection methodology to accommodate
data collection from channel 3B instead of channel 3A since
May 2003.

[:b] Acknowledgments. The authors would like to thank the USDA-
yericultural Research Service (ARS) in Temple. Texas, for supporting this
rescarch through the Specific Cooperate agreement 58-6206-1-005.
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